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Fundamental building blocks of Data Systems 

• B-Tree

• Hash Map

• Bloom Filters

• Queues

• Etc.
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B-Tree example
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B-Tree example: Integers from 0 to 100
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B-Tree example: Integers from 0 to 100
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We could just put all the data into an array and fetch on the key

E.g.: data_array[lookup_key] O(1) lookup 

O(1) memory
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The B-Tree is actually building a model of the CDF of 
the data

We want to know the distribution of data in a dataset



Syracuse University 8

B-Tree

• A B tree maps a key to a page 
in the data

• Once the page is found, a 
search is performed to find 
the requested key

• The search bound is that 
page

B-
Tree

Key

Page

Pages

𝑝𝑜𝑠 𝑝𝑜𝑠 + 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒
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B-Tree as a model

• Replace B-Tree with model 
as: 𝑓 𝑘𝑒𝑦 → 𝑝𝑜𝑠

• Position is predicted with an 
error bound 

• The last step is to search 
within that error bound
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Pages

𝑝𝑜𝑠 − 𝑒𝑟𝑟𝑚𝑖𝑛 𝑝𝑜𝑠+ 𝑒𝑟𝑟𝑚𝑎𝑥

Model
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as: 𝑓 𝑘𝑒𝑦 → 𝑝𝑜𝑠

• Pos is predicted with an error 
bound 

• The last step is to search 
within that error bound

• Essentially, we are trying to 
build a CDF of the data 
distribution. 
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Recursive model indexes

Model

Model Model Model Model Model
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Recursive model indexes

Model

Model Model Model Model Model

Model Model Model Model Model Model

Key

Pos

• The previous model predicts 
the next model instead of a 
node

• Every model is like a subject 
matter expert within that key 
range



ALEX
An Updatable Adaptive Learned 
Index
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OLTP Operations

ALEX is a fully dynamic learned index data structure that aims 
to provide efficient support for: 

1. point lookups 

2. short range queries

3. Inserts

4. Updates

5. Deletes and

6. bulk loading
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Important contributions

• Gapped Array (GA) layout of data 
nodes amortizes the cost of inserts

• RMI that can be updated 
dynamically and efficiently at 
runtime based on the workload and 
data distribution

• Exponential search within the data 
node from the predicted pos

• Model based insertion inserts into 
the position predicted by the model Alex Design
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Data Structures – Internal 
Node

• Internal nodes store a linear 
regression model and an array 
containing pointers to children 
nodes 

• Internal nodes compute the location 
in the pointers array, of the next 
child pointer to follow

• the role of the internal nodes in 
ALEX is to provide a flexible way to 
partition the key space so as to 
create a roughly linear distribution 
of data

Model

Internal Node
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Data Structures – Data Node

• The Data Node stores a linear 
regression model and 2 gapped 
arrays, for keys and payloads

• The gapped array absorbs new 
inserts and amortizes the cost of 
new inserts

• Every Data Node maintains a bitmap 
which tracks the weather each node 
in the GA is occupied or a gap

Model

Data Node

Gapped Array
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Algorithms – Insert with model-based inserts

• The model predicts the insert position of the new element 
using model-based inserts

• If prediction is incorrect (if it destroys sorted order) 
exponential search is used

• If the insert pos is a gap, insertion is done. Else a gap is 
created by shifting data before the insert (inefficient)
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Algorithms – Insert with model-based inserts

• To insert into a full data node (70% threshold), ALEX uses 2 
methods and selects between them based on simple cost models.

– Expansions

– Splits

• Expansion – Allocate a larger Gapped Array, scale or retrain the 
linear regression model, perform model-based inserts of all 
elements.

• Splits - Split nodes either sideways or downwards. Keys are split 
among the 2 new data nodes so that each node is responsible for 
half the key space.



Syracuse University 24

Algorithms – Bulk Inserts

• Bulk insertion is used to insert a large amount of data at 
initialization or to rebuild an index. 

• At each node, decide weather the node should be internal or 
data.

• If internal, compute the fanout of the node, divide the keys 
equally and recurse on each of its child nodes.
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Evaluation methodology

• Alex is tested with B+Tree, model B+Tree, Learned Index and Adaptive Radix Tree (ART)

• 4 Datasets:

– Longitudes 

– Longlat (non linear)

– Lognormal 

– YCSB (linear)

• 4 Workloads:

– Read only

– Read heavy (95%R, 5%W)

– Write heavy (50%R, 50%W)

– Short range queries (95%R, 5%W)

– Write only
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Evaluation methodology

Longitudes Longlat Lognormal YCSB

Num Keys 1B 200M 190M 200M

Key type Double Double 64 bit int 64 bit int

Payload size 8 Bytes 8 Bytes 8 Bytes 80 Bytes

Total size 16 GB 3.2 GB 3.04 GB 17.6 GB
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Performance Metrics – Snapshot

• On read only workloads, ALEX achieves up to 4.1×, 2.2× higher 
throughput and 800×, 15 smaller index size than the B+Tree 
and Learned index, respectively. 

• On read write workloads, ALEX achieves up to 4.0, 2.7x higher 
throughput and 2000x, 475x smaller index size than the 
B+Tree and Model B+Tree, respectively. 

• Alex takes 50% more time to perform bulk loads.
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Performance Metrics – Read heavy workload

• Read heavy workloads perform very 
well on ALEX, doing better than 
B+Tree, Model B+Tree and ART.

• Space requirement is small when 
the dataset is highly linear.

• In more difficult to model datasets, 
index size of ALEX is comparable to 
Model B+Tree and B+Tree. This 
happens because the average and 
max depth increases to 1.5 and 4 
respectively (compare to 1 and 1 for 
YCSB).

0

2

4

6

8

10

12

14

Longitudes Longlat Lognormal YCSBT
h
ro

u
g
h
p
u
t 

(m
il
li
o
n
 o

p
s
/s

e
c
)

Dataset

Fig: Read Heavy 

ALEX Model B+Tree B+Tree ART



Syracuse University 29

Performance Metrics – Write only workload

• Write heavy workloads perform 
comparable to B+Tree and 
Model B+Tree performance. 

• In case of indexes that are hard 
to model e.g.: Longlat, Model 
B+Tree and B+Tree perform 
better than ALEX. 

• ALEX is slow because of 
frequent splits and copies. 

• Space requirement is still small
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Performance Metrics – Lessons learned

• ALEX achieves a considerable speedup while maintaining a significantly 
smaller index size. 

• 4x faster than B+Tree with a 2000x smaller index size.

• For inserts, learned index is orders of magnitude slower than ALEX and 
B+Tree.

• As the ratio of writes is increased, the performance of ALEX takes a hit. 
This is because of copying and splitting operations on the nodes.

• Bulk loading is slow on ALEX. This is because of frequent creation of 
fanout trees.

• Performance is impacted when in model-based inserts, the predicted 
insert position is not a gap. 
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Lessons Learned

• Data distribution can be converted into a CDF that can be learned 
using very simple linear regression models

• Models are magnitudes smaller than traditional B+Tree nodes

• Instead of learning using 1 complex neural network, Using many 
simple regression models that are ‘subject matter experts’ in a 
particular key space is more efficient as the CDF may change over 
time

• Overfitting is a good thing here, generally
• The fanout tree is the cause of the slow bulk load performance 

and that could be an interesting area to look in
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