
ALEX: An Updatable 
Adaptive Learned Index 

Omkar Desai 

Advisor: Prof. Bryan Kim



Syracuse University 2

Fundamental building blocks of Data Systems 

• B-Tree

• Hash Map

• Bloom Filters

• Queues

• Etc.



Syracuse University 3

Fundamental building blocks of Data Systems 

• B-Tree

• Hash Map

• Bloom Filters

• Queues

• Etc.



Syracuse University 4

B-Tree example

0 1 3 3 4

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

20 22 23 24 24

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

95 96 97 98 99

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

……

Page

Root Node

Sorted key-value pair array

……

……



Syracuse University 5

B-Tree example: Integers from 0 to 100

0 1 2 3 4

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

5 6 7 8 9

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

95 96 97 98 99

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

……

Page

Root Node

Sorted key-value pair array

……

……



Syracuse University 6

B-Tree example: Integers from 0 to 100

0 1 2 3 4

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

5 6 7 8 9

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

95 96 97 98 99

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

P
a
y
lo

a
d

……

Page

Sorted key-value pair array

We could just put all the data into an array and fetch on the key

E.g.: data_array[lookup_key] O(1) lookup 

O(1) memory



Syracuse University 7

The B-Tree is actually building a model of the CDF of 
the data

We want to know the distribution of data in a dataset



Syracuse University 8

B-Tree

• A B tree maps a key to a page 
in the data

• Once the page is found, a 
search is performed to find 
the requested key

• The search bound is that 
page

B-
Tree

Key

Page

Pages

𝑝𝑜𝑠 𝑝𝑜𝑠 + 𝑝𝑎𝑔𝑒_𝑠𝑖𝑧𝑒



Syracuse University 9

B-Tree as a model

• Replace B-Tree with model 
as: 𝑓 𝑘𝑒𝑦 → 𝑝𝑜𝑠

• Position is predicted with an 
error bound 

• The last step is to search 
within that error bound

Key

Pos

Pages

𝑝𝑜𝑠 − 𝑒𝑟𝑟𝑚𝑖𝑛 𝑝𝑜𝑠+ 𝑒𝑟𝑟𝑚𝑎𝑥

Model



Syracuse University 10

B-Tree as a model

• Replace B-Tree with model 
as: 𝑓 𝑘𝑒𝑦 → 𝑝𝑜𝑠

• Pos is predicted with an error 
bound 

• The last step is to search 
within that error bound

• Essentially, we are trying to 
build a CDF of the data 
distribution. 

Key

Pos

Pages

𝑝𝑜𝑠 − 𝑒𝑟𝑟𝑚𝑖𝑛 𝑝𝑜𝑠+ 𝑒𝑟𝑟𝑚𝑎𝑥

Model



Syracuse University 11

Recursive model indexes

Model

Model Model Model Model Model

Model Model Model Model Model Model

Key

Pos



Syracuse University 12

Recursive model indexes

Model

Model Model Model Model Model

Model Model Model Model Model Model

Key

Pos

• The previous model predicts 
the next model instead of a 
node

• Every model is like a subject 
matter expert within that key 
range



ALEX
An Updatable Adaptive Learned 
Index



Syracuse University 14

OLTP Operations

ALEX is a fully dynamic learned index data structure that aims 
to provide efficient support for: 

1. point lookups 

2. short range queries

3. Inserts

4. Updates

5. Deletes and

6. bulk loading



Syracuse University 15

Important contributions

• Gapped Array (GA) layout of data 
nodes amortizes the cost of inserts

• RMI that can be updated 
dynamically and efficiently at 
runtime based on the workload and 
data distribution

• Exponential search within the data 
node from the predicted pos

• Model based insertion inserts into 
the position predicted by the model Alex Design



Syracuse University 16

Data Structures – Internal 
Node

• Internal nodes store a linear 
regression model and an array 
containing pointers to children 
nodes 

• Internal nodes compute the location 
in the pointers array, of the next 
child pointer to follow

• the role of the internal nodes in 
ALEX is to provide a flexible way to 
partition the key space so as to 
create a roughly linear distribution 
of data

Model

Internal Node



Syracuse University 17

Data Structures – Data Node

• The Data Node stores a linear 
regression model and 2 gapped 
arrays, for keys and payloads

• The gapped array absorbs new 
inserts and amortizes the cost of 
new inserts

• Every Data Node maintains a bitmap 
which tracks the weather each node 
in the GA is occupied or a gap

Model

Data Node

Gapped Array



Syracuse University 18

Algorithms – Insert with model-based inserts

• The model predicts the insert position of the new element 
using model-based inserts

• If prediction is incorrect (if it destroys sorted order) 
exponential search is used

• If the insert pos is a gap, insertion is done. Else a gap is 
created by shifting data before the insert (inefficient)



Syracuse University 19

Algorithms – Insert with model-based inserts

• To insert into a full data node (70% threshold), ALEX uses 2 
methods and selects between them based on simple cost models.

– Expansions

– Splits

• Expansion – Allocate a larger Gapped Array, scale or retrain the 
linear regression model, perform model-based inserts of all 
elements.

• Splits - Split nodes either sideways or downwards. Keys are split 
among the 2 new data nodes so that each node is responsible for 
half the key space.



Syracuse University 24

Algorithms – Bulk Inserts

• Bulk insertion is used to insert a large amount of data at 
initialization or to rebuild an index. 

• At each node, decide weather the node should be internal or 
data.

• If internal, compute the fanout of the node, divide the keys 
equally and recurse on each of its child nodes.



Syracuse University 25

Evaluation methodology

• Alex is tested with B+Tree, model B+Tree, Learned Index and Adaptive Radix Tree (ART)

• 4 Datasets:

– Longitudes 

– Longlat (non linear)

– Lognormal 

– YCSB (linear)

• 4 Workloads:

– Read only

– Read heavy (95%R, 5%W)

– Write heavy (50%R, 50%W)

– Short range queries (95%R, 5%W)

– Write only



Syracuse University 26

Evaluation methodology

Longitudes Longlat Lognormal YCSB

Num Keys 1B 200M 190M 200M

Key type Double Double 64 bit int 64 bit int

Payload size 8 Bytes 8 Bytes 8 Bytes 80 Bytes

Total size 16 GB 3.2 GB 3.04 GB 17.6 GB



Syracuse University 27

Performance Metrics – Snapshot

• On read only workloads, ALEX achieves up to 4.1×, 2.2× higher 
throughput and 800×, 15 smaller index size than the B+Tree 
and Learned index, respectively. 

• On read write workloads, ALEX achieves up to 4.0, 2.7x higher 
throughput and 2000x, 475x smaller index size than the 
B+Tree and Model B+Tree, respectively. 

• Alex takes 50% more time to perform bulk loads.



Syracuse University 28

Performance Metrics – Read heavy workload

• Read heavy workloads perform very 
well on ALEX, doing better than 
B+Tree, Model B+Tree and ART.

• Space requirement is small when 
the dataset is highly linear.

• In more difficult to model datasets, 
index size of ALEX is comparable to 
Model B+Tree and B+Tree. This 
happens because the average and 
max depth increases to 1.5 and 4 
respectively (compare to 1 and 1 for 
YCSB).

0

2

4

6

8

10

12

14

Longitudes Longlat Lognormal YCSBT
h
ro

u
g
h
p
u
t 

(m
il
li
o
n
 o

p
s
/s

e
c
)

Dataset

Fig: Read Heavy 

ALEX Model B+Tree B+Tree ART



Syracuse University 29

Performance Metrics – Write only workload

• Write heavy workloads perform 
comparable to B+Tree and 
Model B+Tree performance. 

• In case of indexes that are hard 
to model e.g.: Longlat, Model 
B+Tree and B+Tree perform 
better than ALEX. 

• ALEX is slow because of 
frequent splits and copies. 

• Space requirement is still small

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Longitudes Longlat Lognormal YCSBT
h
ro

u
g
h
p
u
t 

(m
il
li
o
n
 o

p
s
/s

e
c
)

Dataset

Fig: Write Only 

ALEX Model B+Tree B+Tree ART



Syracuse University 30

Performance Metrics – Lessons learned

• ALEX achieves a considerable speedup while maintaining a significantly 
smaller index size. 

• 4x faster than B+Tree with a 2000x smaller index size.

• For inserts, learned index is orders of magnitude slower than ALEX and 
B+Tree.

• As the ratio of writes is increased, the performance of ALEX takes a hit. 
This is because of copying and splitting operations on the nodes.

• Bulk loading is slow on ALEX. This is because of frequent creation of 
fanout trees.

• Performance is impacted when in model-based inserts, the predicted 
insert position is not a gap. 



Syracuse University 31

Lessons Learned

• Data distribution can be converted into a CDF that can be learned 
using very simple linear regression models

• Models are magnitudes smaller than traditional B+Tree nodes

• Instead of learning using 1 complex neural network, Using many 
simple regression models that are ‘subject matter experts’ in a 
particular key space is more efficient as the CDF may change over 
time

• Overfitting is a good thing here, generally
• The fanout tree is the cause of the slow bulk load performance 

and that could be an interesting area to look in



Thank you

Omkar Desai
PhD student 
Advisor: Prof. Bryan Kim
odesai@syr.edu



Syracuse University 33

References

• Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned 
Index Structures. In Proceedings of the 2018 International Conference on Management of Data 
(Houston, TX, USA) (SIGMOD fi18). Association for Computing Machinery, New York, NY, USA, 489–
504. https://doi.org/10.1145/3183713.3196909 

• Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish
Chandramouli, Johannes Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An 
Updatable Adaptive Learned Index. In Proceedings of the 2020 ACM SIGMOD International 
Conference on Management of Data (SIGMOD '20). Association for Computing Machinery, New 
York, NY, USA, 969–984. DOI:https://doi.org/10.1145/3318464.3389711

• https://www.youtube.com/watch?v=NaqJO7rrXy0&t=897s&ab_channel=stanfordonline


