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Goal

Decrease background ops overhead to 
increase user throughput

Dynamically adapt key-value stores to 
changing workload characteristics in 

runtime



A recap - DeuceDB_v1 (Project 2)

• TRIAD, the paper we implemented, aims to decrease background 
work overhead in the presence of a skewed workload (80/20).

• TRIAD, in order to avoid unnecessary background I/O, does hot and 
cold key separation in the memtable and also delays compaction 
when there isn’t enough overlap to amortize the cost of the 
background compaction. 

• These efforts help to reduce the overall compute spent in background 
I/O work and helps improve LevelDB performance.



Evaluations - DeuceDB_v1 (Project 2)



What’s with the name?

• We implemented 2 algorithms to delay background work when it’s 
not worth it

• “Deuce” for 2

• We wanted to sound cooler than we actually are



Problem statement 

• Databases are usually built keeping in mind a specific type of 
workload.

• Databases based on LSM are suitable for very fast write throughput

• Databases based on b-tree like structures are built for faster reads.

• Databases, in production could be facing a wide variation of 
workloads including the worst case for the database in question.



Proposal

• The drawback of TRIAD is that the system is implemented to work 
well on a skewed workload only.

• In case of uniform workloads, or read only workloads, the 
performance suffers

• We argue that workload characteristics change over time and 
databases should be adaptable to the changing workload patterns. 

• For this reason, we propose an improvised version of DeuceDB.



Workload Characterization 

• We propose a solution to analyze 
the current workload condition and 
characterize it as:
• Read Heavy
• Write Heavy
• Skewed
• Uniform

• We implement a 
WorkloadCharacterizer as a new util 
class to understand the workload 
characteristic and dynamically 
adapt parameters of the database 
at runtime.

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• We want to dynamically 
understand the read to write 
ratio being experienced by the 
database.

• For every Put and Get operation, 
we record the current get count 
and put count. 

• We calculate the ratio in 
windows of 10k operations to 
ensure freshness

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• We use this read to write ratio to 
modify the overlap ratio which 
was a hardcoded value in our 
previous implementation 

• If the database is experiencing 
high reads, we reduce the 
overlap ratio to make sure we 
flush data from L0 to L1 faster to 
make reads faster.

• Else, we increase the overlap 
ratio threshold to reduce BG 
work.

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• TRIAD MEM improvements
• For write heavy

• If skewed

=> enable HotColdKeySeparation

• If uniform

=> disable HotColdKeySeparation Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Evaluations 

• Hardware
• CPU: 8 * Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz

• CPUCache: 12288 KB

• Keys: 16 bytes each
Values: 100 bytes each

• DRAM: 32GB

• Storage: Samsung 840 evo 1TB M.2 SATA SSD



Evaluations
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Evaluations

1670.1

1621.9

1442

1300

1350

1400

1450

1500

1550

1600

1650

1700

readseq

ReadSequential

DeuceDB+Workload Charac DeuceDB LevelDB

728.6
722.5

676

640

650

660

670

680

690

700

710

720

730

740

readreverse

ReadReverse

DeuceDB+Workload Charac DeuceDB LevelDB

*Evaluations on 5M KV pairs



Evaluations 

• ReadSeq:

• We were able to extract better read performance. An improvement of 3% over 
our DeuceDB implementation

• This is a 15% improvement over baseline LevelDB.

• Readreverse:

• We were able to extract better read performance. An improvement of 1% over 
our DeuceDB implementation 

• This is an 8% improvement over baseline LevelDB.

• We were able to achieve this without having any impact on Write performance



Q & A
DeuceDB_v2


