
DeuceDB: Smarter categorizing 
and scheduling to amortize 

background IO costs in LevelDB
Omkar Desai, Xiangqun Zhang, Ziyang Jiao

Oana Balmau, Deigo Didnona, Rachid Guerraoui, Willy Zwanenepoel, Huapeng Yuan, Aashray Arora, Karan Gupta, 
and Pavan Konka



Goal

Decrease background ops overhead to 
increase user throughput

Dynamically adapt key-value stores to 
changing workload characteristics in 

runtime



A recap - DeuceDB_v1 (Project 2)

• TRIAD, the paper we implemented, aims to decrease background 
work overhead in the presence of a skewed workload (80/20).

• TRIAD, in order to avoid unnecessary background I/O, does hot and 
cold key separation in the memtable and also delays compaction 
when there isn’t enough overlap to amortize the cost of the 
background compaction. 

• These efforts help to reduce the overall compute spent in background 
I/O work and helps improve LevelDB performance.



Evaluations - DeuceDB_v1 (Project 2)



What’s with the name?

• We implemented 2 algorithms to delay background work when it’s 
not worth it

• “Deuce” for 2

• We wanted to sound cooler than we actually are



Problem statement 

• Databases are usually built keeping in mind a specific type of 
workload.

• Databases based on LSM are suitable for very fast write throughput

• Databases based on b-tree like structures are built for faster reads.

• Databases, in production could be facing a wide variation of 
workloads including the worst case for the database in question.



Proposal

• The drawback of TRIAD is that the system is implemented to work 
well on a skewed workload only.

• In case of uniform workloads, or read only workloads, the 
performance suffers

• We argue that workload characteristics change over time and 
databases should be adaptable to the changing workload patterns. 

• For this reason, we propose an improvised version of DeuceDB.



Workload Characterization 

• We propose a solution to analyze 
the current workload condition and 
characterize it as:
• Read Heavy
• Write Heavy
• Skewed
• Uniform

• We implement a 
WorkloadCharacterizer as a new util 
class to understand the workload 
characteristic and dynamically 
adapt parameters of the database 
at runtime.

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• We want to dynamically 
understand the read to write 
ratio being experienced by the 
database.

• For every Put and Get operation, 
we record the current get count 
and put count. 

• We calculate the ratio in 
windows of 10k operations to 
ensure freshness

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• We use this read to write ratio to 
modify the overlap ratio which 
was a hardcoded value in our 
previous implementation 

• If the database is experiencing 
high reads, we reduce the 
overlap ratio to make sure we 
flush data from L0 to L1 faster to 
make reads faster.

• Else, we increase the overlap 
ratio threshold to reduce BG 
work.

Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Workload Characterization 

• TRIAD MEM improvements
• For write heavy

• If skewed

=> enable HotColdKeySeparation

• If uniform

=> disable HotColdKeySeparation Workload 
Characterizer

TRIAD MEM

TRIAD DISK



Evaluations 

• Hardware
• CPU: 8 * Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz

• CPUCache: 12288 KB

• Keys: 16 bytes each
Values: 100 bytes each

• DRAM: 32GB

• Storage: Samsung 840 evo 1TB M.2 SATA SSD



Evaluations

0

10

20

30

40

50

60

70

80

90

fillSeq fillRandom Overwrite

Write performance

DeuceDB+Workload Charac DeuceDB LevelDB

*Evaluations on 5M KV pairs



Evaluations

1670.1

1621.9

1442

1300

1350

1400

1450

1500

1550

1600

1650

1700

readseq

ReadSequential

DeuceDB+Workload Charac DeuceDB LevelDB

728.6
722.5

676

640

650

660

670

680

690

700

710

720

730

740

readreverse

ReadReverse

DeuceDB+Workload Charac DeuceDB LevelDB

*Evaluations on 5M KV pairs



Evaluations 

• ReadSeq:

• We were able to extract better read performance. An improvement of 3% over 
our DeuceDB implementation

• This is a 15% improvement over baseline LevelDB.

• Readreverse:

• We were able to extract better read performance. An improvement of 1% over 
our DeuceDB implementation 

• This is an 8% improvement over baseline LevelDB.

• We were able to achieve this without having any impact on Write performance



Q & A
DeuceDB_v2


